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Abstract. A class of solutions of the Einstein-Maxwell field equations which satisfy the 
condition that the null tetrad, determined by the electromagnetic field, is parallelly 
transported along the curves tangent to the complex null vectors mi and mi is investigated. 
For the case when mi has zero twist the general solution of the field equations is found in 
closed form. A symmetry of the Newman-Penrose equations first introduced by Sachs is 
used to show the relationship between this class of solutions and those recently studied by 
Tariq and Tupper. 

1. Introduction 

A class of solutions of the vacuum Einstein-Maxwell field equations is investigated. 
The electromagnetic field will be assumed to be non-null and consequently a pseudo- 
orthonormal tetrad of two real null vectors li and ni and two complex-conjugate vectors 
mi and mi exists such that the self-dual Maxwell bivector .takes the form: 

F ;  = +(nplj3+ mLifij,), (1.1) 

where + is the complex electromagnetic field strength. Maxwell’s equations can be 
written in the concise form: 

Ffi’;, = 0. (1 .a 
The fields investigated here are assumed to satisfy the condition that all four vectors of 
the null tetrad are parallelly transported along the curves tangent to mi and mi, i.e. 

1, ;im = n, ;p’ = mi = mi ,.m’ = 0. (1.3) 

These fields are shown to be algebraically general in Petrov’s classification and the spin 
coefficients T and T (the complex expansions of mi and f i i )  are coupled by the relation 
rT = T+. No solutions exist for which mi is expansion-free but twisting (7 = ii) whereas 
in the case where mi is twist-free but expanding (T + ii = 0) the general solution can be 
obtained in closed form. 

Einstein-Maxwell fields satisfying the dual condition that the null tetrad is parallelly 
propagated along li and ni have many analogous properties and have recently been 
investigated by Tariq and Tupper (1974, 1975, to be referred to as m). For example, 
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their solutions are also algebraically general and the complex expansions p and p of li 
and ni satisfy the coupling theorem of Debney and Zund (1972) namely pi.i =@. 

The two classes of solution are related by a duality transformation first introduced 
by Sachs. The existence of this duality relationship between general classes of non-null 
Einstein-Maxwell fields and its interpretation as a tetrad transformation in a complex 
space-time are briefly discussed. 

2. The basic equations and the duality transformation 

Throughout this paper the spin coefficient formalism and notation of Newman and 
Penrose (1962, 1963) will be used. 

On choosing the null tetrad to be aligned with the electromagnetic field as in 
equation ( 1 . 1 )  we obtain 4o = = 0;  4, = 4. The conditions that the tetrad is parallelly 
propagated along mi are 

(2 .1)  p = = p = A  = (y = p s 0. 

Maxwell's equations (1.2) take the particularly simple form: 

Dq5 = A 4  = ( S  - 27)4  = ( S +  2 ~ ) 4  = 0. (2.2) 

The Ricci identities become: 

( 2 . 3 ~ )  

(2.3b) 

( 2 . 3 ~ )  

(2 .3d)  

(2 .3e)  

(2 .3f )  

(2 .3g)  
(2 .3h)  

(2 .3i)  

(2 .3i)  
(2 .3k)  

(2.31) 

(2 .3m) 

(2 .3n)  

(2.3P) 

(2.3q)  
(2.3r) 

(2 .3s)  
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On notingequations (2.1), (2.2) and (2.3c,f,i) the Bianchi identities reduce to the form: 

WO = 4*0 ( 2 . 4 ~ )  

(2.46) 

(2 .4~)  

K*4 = (27 - r ) * 2  

D$z = A+2 = 0 

(2.4d) 

(2.4e) 

The intrinsic differential operators satisfy the following commutation relations: 

s S - S b = O  ( 2 . 5 ~ )  

6D-D6= - ~ ? D + K A - ( E - Z ) ~  (2.56) 

6A-AS = - F D + T A - ( ~ - ~ / ) S  ( 2 . 5 ~ )  

AD- DA = ( y  + T)D + ( E  +Z)A - ( T  + +)b- (7 + (2.5d) 

In fact the above equations can be obtained directly from equations (2.4), (2.5), (2 .6) ,  
(2.9), (3.1) and (3.2) of TT by means of a duality transformation. This operation is 
induced by the quasi-tetrad transformation: 

1: = mi, n?: = - 6. m r = li, rii,*= -n, .  

The operation preserves the tetrad orthogonality relations (e.g. Irn'* = -mir7zi = + 1) 
and a double application of the operation is the identity. In general the operation does 
not commute with complex conjugation. The spin coefficients transform under (*) as 
follows: 

- 
E * =  -A p* = 7, p* = -e, 

v* = A ,  - U, p * =  - IT, /i*=.r, (2.6) y*- - 

cy*' - 

- U, K *  = 

- Y? - €7 p* = E ,  p* = y. ** = 

The transformation properties of the remaining spin coefficients can be obtained by 
operating on equation (2.6) with the duality operator (*) and using the fact that for any 
spin coefficient x, x** = x. 

The behaviour of the components of the Maxwell and Weyl tensors and of the 
intrinsic derivative operators is given by 

4,*= -407 6: = - 6 2 ,  4; = -42, 4; = -40, 
si;*- 47 = 4 1 7  67 = -61, *; = *2, 2 - Ijl2, 

*: = $44, si;: = $0, *is: = -*3, s i ;$=-s i ;1 ,  

*,* = $0, si;,* = 64, *:=-+I, JT = -$3, (2.7) 

- D* = 6, A*= -6, 6* = D, a * =  - A ,  

The whole spin coefficient formalism is invariant under the (*) operation. For example 
the Ricci identity involving Dp -SIC is transformed to that involving ST - AU whereas 
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the identity containing Da  - -SK is mapped to itself. The duality operator preserves the 
class of vacuum fields and also the class of non-null (but not null) Einstein-Maxwell 
fields. As the spin coefficient formalism is invariant under the operation it is often 
possible to write down dual versions of theorems (and their proofs) relating to vacuum 
or non-null Einstein-Maxwell solutions. 

In particular the solutions considered by TT which satisfy the condition that 
T = K = v = T = E = y = 0 are dual to those considered in this paper. Dual versions of 
the -IT theorems will be given in 0 3 without explicit proofs. 

As a further example we note that the conditions K = v = 0 and t,bo = (jll = 0 are both 
self-dual. Hence the vacuum Goldberg-Sachs theorem is self-dual and furthermore so 
is its proof (Newman and Penrose 1962). 

However one point should not be overlooked when constructing dual proofs: a 
proof which relies on the reality of some quantity x i  or 1' will not in general be valid in 
dualized form, as x*  and X* will not usually be complex conjugates. This is due to the 
fact that the (*) operation is not a valid tetrad transformation for real space-times. 
However if one considers complex space-times with a basis of four independent 
complex null vectors li, ni, mi and f i i  then the operation is a valid tetrad transformation. 
In this case barred and unbarred quantities are no longer restricted to be complex 
conjugates and the Einstein-Maxwell field equations (and their complex conjugates) 
are replaced by a set of formally identical equations for 24 complex spin coefficients 
(Fette et a1 1976). The (*) operation, being a tetrad transformation, leaves invariant 
these complex equations. 

3. General results 

By applying the commutation relations (2.5) to the scalar 4 and noting equation (2.2) 
we obtain the equations: 

rr= T77 

DT=(E-Z)T 

( 3 . 1 ~ )  

(3.16) 
DT = (Z - E)T 

AT = ( y  - 7)T 

A T  = (7 - y ) v  

Dv = - ( 3 ~  + Z)v 

AK = (3 y + 7 ) ~ .  

( 3 . 1 ~ )  

(3.ld) 

(3.le) 

(3.lf) 

( 3 . W  
On differentiating the Bianchi identities (2.4c,d) we obtain: 

DK = ( 3 ~  + Z ) K  

AV = - (3y + 7)v 
( 3 . 2 ~ )  

(3.26) 

( 3 . 2 ~ )  

(3.2d) 

(3.2e) 
Equations (3.1) and (3.2) above are completely analogous to equations (2.7), (2.8) and 
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(3.7) of m. In particular equation ( 3 . 1 ~ )  is the analogue of the coupling theorem of 
Debney and Zund (1972) and states that the complex expansions 7 and m of mi and mi 
have the same magnitude. This result can be proved under the weaker assumptions 
p + p  = p  +ii =o. 

Theorem 1 .  There are no fields for which mi is expansion-free but twisting. 

Proof. The condition that mi is ex ansion-free but twisting is T = 75 # 0. From equa- 
tions (2.3a,h,j,p) we deduce that 7 = ~ j i  and 2$, = VK + Fk -2+. Hence I K V ~  = 6 and 
so t,b2 d 0. However equation (2.3f) implies 14, 2 0 and consequently 1(1, = q5 = 0. This 
result has no analogue in -rr as it depends on the inequality + 3 0 which has no dual 
version. We now list three results which are completely dual to those in -rr. 

4 

Lemma 1 .  The vanishing of any one of the spin coefficients r, T, K and Y implies that all 
four vanish and furthermore that the electromagnetic field is zero. 

Theorem 2. A non-null Maxwell field which is such that the null tetrad determined by 
the electromagnetic field is parallelly transported along mi is algebraically general. 

In fact by a slight extension of the argument in n and its dual one can show that if 
a& = @0$4 where a is a real constant, then a = - 3 (a = 9 would give an algebraically 
special field). 

Theorem 3. A necessary and sufficient condition that one can put E = y = 0 by means of 
an allowable tetrad transformation: 6 = A&, rii = A-'ni, 6ii = eiemi with SA = SO = 0; is 
that mi is non-twisting (i.e. r + ii = 0). 

4. An exact solution 

We assume that r + 5 = 0 and hence by theorem 3 we may put E = y = 0. Consequently 
equation (2.3s) implies that 214, = YK ++ and VK = jik. From equations (2.3c,d) and 
(3.2e) we deduce that 

( 4 . 1 ~ )  

(4.lb) 

( 4 . 1 ~ )  
Applying the differential operator S to ( 4 . 1 ~ )  one obtains 

(4.2) 
2 

7 =-3KG. 

Hence we see that (2.3), (2.4), (2.5), (3.1) and (3.2) imply that the intrinsic derivatives D 
and A of K ,  Y, r, T,  +bo, I+b2, and I+b4 are all zero and that 

S r  = 47' (4.3a) 
8 K  = 47K 

&U = 4% 

SK = S; = sv = 0. 

(4.3b) 

(4.3c) 

(4.3d) 
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The vectors mi and mi have vanishing Lie bracket as each is parallelly transported along 
the other. Furthermore (3.1) together with the conditions T + ii = E = y = 0 imply that 
mLi,.] = 0 (i.e. mi is a gradient). Consequently a complex coordinate 6 = x3+ix4 exists 
such that mi = ti, and mi(a/axi) = @/at). From the orthogonality relations we deduce 
that l 3  = l4 = n3  = n4 = 0. The commutation relations (2.5) applied to the coordinates 
x a ( a  = 1,2), lead to 

61" = da +ma ( 4 . 4 ~ )  

an" = - ?la +ma 

Dn" = A l a .  

(4.4b) 

(4.4c) 

Equations (4.1)-(4.4) are sufficient to completely determine the metric and tetrad 
vectors. Integration of these equations is relatively straightforward and after using the 
allowable coordinate and tetrad freedom to simplify the results we obtain 

1 i J 3  * ---7 * 4 = 2  
i J 3  * -- 

O - ,e2' - 866 
(4.5) 

J 3  J 3  
n i  = r-l12( sin -0, cos -e, 0, 0 )  

2 2 

where we have introduced real coordinates r and 6 by means of the relation 6 = reie. 
With the aid of the completeness relation g" = 21"n"- 2 m " d  it is now a simple matter 
to determine the metric: 

ds2 = r[sin~'38(dx')~- 2 C O S J ~ ~  dx' dx2-sinJ38(dx2)2]-dr2-r2 de2. (4.6) 
The electromagnetic field is determined by integrating Maxwell's equations (2.2). The 
result is 

4 = eiP/2 J 2 r  (4.7) 
where p is an arbitrary constant determining the complexion of the electromagnetic 
field. 

The. exact solution represented by (4.5)-(4.7) is very special and contains no 
arbitrary parameters apart from the trivial constant p which does not affect the 
gravitational field. However it is algebraically general in terms of the Petrov classifica- 
tion as 3& = - ( c ~ ~ + ~  z 0. The solution possesses a real curvature singularity at r = o as 
both the invariants 44 and t,k2 become infinite there. The solution admits a three- 
parameter isometry group with three-dimensional orbits generated by the Killing 
vectors 

a a J3 a 
X1 =i, ax X2=ax2' X 3 = - ( x 2 4 - x  2 ax 'aP 2 ) +- ae (4.8) 

with commutation relations of an algebra of Bianchi type VII: 
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The isometry group is complete as t,b2 = (l/8r2) is a metric invariant and a direct 
integration of Killing's equation reveals that X1, X 2  and X 3  are the only Killing vectors 
tangent to the hypersurfaces r = constant. 

The causal nature of all of the Killing vectors is not the same everywhere. For 
example d/dx' is time-like, null or space-like when sin& is positive, zero or negative 
respectively. The hypersurfaces where it is null (i.e. sin J 3 0  = 0) are time-like and so are 
not Killing horizons in the sense of Carter (1973). None of the Killing vectors is 
hypersurface orthogonal and so the solution is not static but only locally stationary. 

The range of the coordinates is as follows: 

-CO<xl<+CO, - C O < x 2 <  +CO, O < r <  +CO, - O O < ~ < + C O .  

The coordinate r could take negative values but in this case the resultant space-time 
would not be connected and would consist of two identical components r < 0 and r > 0. 
One could of course make any of the coordinates xl, x 2 ,  8 periodic by considering a 
quotient manifold of the original space-time manifold by a discrete subgroup of the 
isometry group. Provided that the action of this subgroup is free and properly 
discontinuous then the quotient manifold will be a Hausdorf€ space-time (Hawking and 
Ellis 1973). For example one could make 8 periodic with period so by identifying all 
points of the form 

(4.10) 

where s is an arbitrary integral multiple of so. The 2-surfaces x'=constant, x 2 =  
constant are then intrinsically flat and are globally isometric to a (possibly many- 
sheeted) cone with the vertex removed, or if so = 27r to a punctured plane. Unless so is 
an integral multiple of 47r/J3 the Killing vector fields X1 and X 2  are not invariant under 
the subgroup (4.10) of the one-parameter group generated by X3.  Consequently XI 
and X z  in general do not generate global isometries in the quotient space-time though 
they are still of course local Killing vectors. 

The space-time is not asymptotically flat and so it is not possible to interpret the 
metric as representing the field of a spinning particle. As yet no physical interpretation 
for the metric is known. 
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Note added in proof. The metric (4.6) cannot be written in the usual Lewis-Papapetrou 
form for stationary axisymmetric fields: 

ds2 = f ( p ,  z)(dt+o(p,  z )  d4)'-f-'(p7 z ) [p2  d42+e2y@,"(dp2+dz2)], 
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because the electromagnetic field circularity conditions (Carter 1973) are not satisfied 
and consequently 

R ; +R: # 0. 

Although the metric and Ricci tensor satisfy their respective circularity conditions, the 
generalized Papapetrou theorem (Carter 1973) is not violated as the axis ( r = O )  is 
singular. 
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